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Abstract—In this work, we introduce a methodology that
takes advantage of the inherent network diversity present in
vehicular communications to improve the performance of safety
applications. This methodology is based on a framework that
simultaneously exploits the strengths of each individual network
by using a set of decision rules. The implementation begins with
a manual approach in which a typical, hierarchical decision
tree characterizes the decision process of a single application
when sending data to other users in the network. Analytical and
simulation results validate the decision system approach when
diversity is exploited as demonstrated by a boost in application
performance, achieving an average latency under 100 ms and a
40% increase in throughput due to the increased packet delivery
ratio. We then apply an ensemble learning technique, Random
Forests (RF), to automatically reproduce the performance of the
manually built tree system. Simulations under realistic traffic
scenarios show the RF approach can replicate manually-built
tree performance with up to 98% precision. A comparison with
another state-of-the-art hybrid method also shows the RF scheme
improves performance under a different application scenario
without additional manual adjustments. With our methodology,
we can add different application requirements and network
characteristics to obtain a fully automated and adaptable decision
system to optimize vehicular safety applications.

Index Terms—Connected Vehicles, Decision system, Decision
tree learning, Heterogeneous networks, Random Forest.

I. INTRODUCTION

THE large investments that government, academia, and
industry sectors have dedicated to the evolution of In-

telligent Transportation Systems (ITS) have led to the devel-
opment of safety and traffic management applications ready
to be deployed in vehicles and road infrastructure. Several
wireless access technologies have been developed to support
the communication flows in vehicular networks given the
growing information exchange expected among vehicles (V2V
communications) and between vehicles and the infrastructure
(V2I communications). Among the available technologies, cel-
lular 4G/5G and IEEE 802.11-OCB (formerly known as IEEE
802.11p) are front-runner candidates, and both are considered
well suited for providing ITS services [1], [2].

Nevertheless, the high mobility of vehicles and the dynamic
topology changes of the vehicular communications networks
make it difficult to provide satisfactory ITS services only
through a single wireless network. In fact, it is widely ac-
cepted that the supporting infrastructure and communications
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technologies for vehicular networks will be heterogeneous
in nature, hence providing for network diversity [3], [4].
Therefore, future vehicular networks should consider systems
designed to exploit the multiple access technologies in what is
called a Heterogeneous Vehicular Network (HetVNET). This
network model is illustrated in Fig. 1.

It must also be noted that both IEEE 802.11-OCB and
mobile cellular networks have their own limitations when used
in vehicular environments. In particular, IEEE 802.11-OCB
was mainly designed for short-range communications without
the need of pervasive roadside infrastructure, but it can hardly
provide reliable connectivity between vehicles as the network
density increases [1], [5]. On the other hand, although mobile
cellular networks can provide wide geographical coverage,
they cannot efficiently support real-time information exchange
for local areas [6].

It is important to mention an emerging technology, called
C-V2X [7], that is currently challenging 802.11-OCB for
supremacy in the field of V2X communications. C-V2X refers
to the family of cellular technologies designed for automotive
applications and standardized by 3GPP. It is, in essence, an
LTE variant defined in REL14 [8] of the standard that added
direct car-to-car capability. The main issue between C-V2X
and 802.11-OCB is that, while both technologies use the
same spectrum, they may not be inter-operable. Because they
both use different physical layers and MAC protocols, their
coexistence could potentially result in harmful co-channel
interference issues. Therefore, our contribution focuses on
studying the interworking of 802.11-OCB and standard LTE
given the already proven compatibility between the two tech-
nologies and the potential for boosting the performance of
critical safety applications both in terms of throughput and
latency.

It is clear that each access network has both advantages
and disadvantages. In the long run, this should not be a
race among the different options; instead, multiple options
will need to combine for a robust communications system to
operate within a heterogeneous infrastructure. In this work, we
leverage multiple options by creating an intelligent framework
that integrates a set of decision rules. The approach allows data
packets to flow through the network with the most favorable
conditions in terms of throughput and delay. On the appli-
cations side, we focus on a single category, i.e., cooperative
awareness applications, since they share similar reliability
and latency requirements. More specifically, depending on the
application requirements, the control and signaling flows of
the cooperative awareness application may, for example, travel
via IEEE 802.11-OCB, while the data flow may be transmitted
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Fig. 1: Heterogeneous Vehicular Network Environment

over the cellular infrastructure.
Furthermore, we demonstrate that the decision tree approach

helps to solve the task at hand by improving the applications’
performance. However, many different decision trees would
have to be designed and implemented to obtain a truly robust
and generalized decision system. Thus, in this work, we also
automate the system and demonstrate that a more robust and
generalized decision system can be obtained with the proposed
automation. Finally, we show through comparative analysis
that the decision system approach can outperform a state-
of-the-art hybrid architecture in regards to both the network
latency and the packet delivery ratio (PDR).

To the best knowledge of the authors, the proposed decision
system approach is the first to attempt a solution to the
network selection problem for each individual user at the
moment of message generation without the need to perform
excessive computations or execute complex algorithms (e.g.
clustering and bio-inspired mechanisms). The decision system
considerably increases the probability of meeting the strict
requirements of safety applications. Furthermore, our approach
has the added advantages of flexibility and the potential to
integrate with other state-of-the-art hybrid schemes.

The remainder of this paper is organized as follows. In
Section II, we show a review of the related work. In Section
III, we introduce our decision system framework and analyze
its performance via analytical models and simulations. Section
IV deals with the automation of the decision system and
introduces the Random Forest algorithm. A comparative study
based on simulation experiments is discussed in Section V.
Finally, Section VI concludes this paper with a summary of

our main results and findings.

II. RELATED WORK

Initially, research on HetVNETs concentrated on demon-
strating how the integration of a particular network to an
existing one (either cellular into vehicular or vice versa) can
be used to improve the performance of the joint network
for a particular application or scenario. For example, the
authors in [9] provide an analytical study in which they
quantify and evaluate how much vehicular ad-hoc networks
(VANETs) can offload from the cellular infrastructure while
considering the constraints related to the capacity and stability
of vehicular links, the infrastructure features, and the quality
of Service (QoS) flow constraints. Meanwhile, the use of V2V
communications to partially relieve the cellular infrastructure
from Floating Car Data traffic is explored in [10].

More recently, the focus has turned into the development of
hybrid architectures, i.e., multi-network architectures, whose
distinguishing feature is usually their proposed network selec-
tion scheme. For example, Li et al. [11] developed a cellular-
VANET heterogeneous network architecture to disseminate
data more efficiently. They introduce a cooperative protocol
based on coalition game theory that combines both networks
to improve the dissemination of safety messages. Meanwhile,
Zhu et al. [12] approach to network selection in heteroge-
neous networks is based on information theory. They model
the selection problem as a Bayesian game with incomplete
information under the assumption that each user has only
partial information regarding the preferences of other users.

Another discerning aspect to consider between hybrid ar-
chitectures is whether or not they take into account the
online network status. Some schemes only consider basic static
information about the available networks [9]–[11]. However,
more complex schemes integrate online information about
the network state (e.g., bandwidth allocation and channel
congestion) to solve the problem of network selection [12]–
[14]. For example, Ucar et al. [13] propose a IEEE 802.11p
and LTE hybrid architecture for message dissemination. They
combine clustering of vehicles and the cellular architecture
with the goal of achieving a high PDR and low latency, while
keeping usage of the cellular infrastructure at a minimum
level. Tian et al. [14] propose a bio-inspired network selection
solution designed to guarantee the QoS of mobile users as
well as efficient utilization and fair allocation of network
resources. Their solution is based on an Attractor Selection
Model (ASM), which is used to describe the self-adaptive
response of a cellular gene network to varying environmental
conditions.

However, one common issue that many approaches have,
especially those focused on the use of more abstract mathe-
matical tools (e.g game theory, information theory, and opti-
mization) [9]–[12], is that they usually measure performance
in terms of cost/utility functions and probability distributions.
While this is useful to demonstrate their respective advantages,
it does not allow us to visualize their impact in terms of more
concrete quantities, such as PDR and latency.

Furthermore, most schemes report achieving low latency
as a goal but do not specifically target (much less achieve)
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Ref Focus Simultaneity Network State App Requirements

[9] QoS Aware Approach for Cellular Offloading Only for offloading in one direction
(Cellular to V2X not viceversa) Not considered Not considered

[10] Floating Car Data offloading Only for offloading in one direction
(V2X to Cellular not viceversa) Not considered Not considered

[11] Cooperative Data Dissemination
using Game Theory Yes, via cluster heads Not considered Partially (throughput

but not latency)

[12] Network selection in Heterogeneous
Networks using Information Theory Yes, allows for network selection Considered Not Considered

[13] Cluster-based hybrid
LTE-802.11p architecture

Yes, via cluster heads
Minimizes cellular infrastructure usage Considered Considered but latency

values too high

[14] Self-adaptive network selection Yes, allows for network selection Considered Considered but not
for safety applications

This Automated Decision System for VANETs Yes, allows for network selection Considered Considered

TABLE I: Existing dissemination schemes and their approach to key areas of HetVNETs

the 100 ms critical threshold required for safety applications.
Moreover, the particular beacon frequency in which the ap-
plication operates is usually never mentioned. The same can
be said for their specific reliability and communication mode
requirements.

Considering the related existing dissemination schemes,
we identified three key areas while developing our proposed
system: First, simultaneity, i.e., the ability of a scheme to
exploit multiple networks in parallel; second, the network
state, i.e., the ability of a scheme to consider current network
status (e.g., congestion and number of users) and adapt to
changes of this status; and third, the application requirements,
i.e., the ability to consider the requirements of a particular
application (e.g., latency, beacon frequency, etc.) and satisfy
these requirements. Table I shows a comparison of related
existing approaches concerning these key areas.

Safety applications and more specifically, cooperative
awareness applications, must meet strict reliability and latency
requirements over a wide variety of network conditions. One
key advantage of our approach is that we start from these strict
requirements to build our decision system from the perspective
of a single vehicle. This system, then, incorporates knowledge
about the state of the network and the inherent advantages
of the distinct available access mechanisms to fulfill those
strict requirements, resulting in a scheme that boosts the
performance of applications in their most critical areas.

III. INTELLIGENT SYSTEM BASED ON DECISION ANALYSIS

As previously mentioned, in the heterogeneous vehicular
network shown in Fig. 1, there are typically two types of
communications links: V2V and V2I. V2V allows for short
and medium range communications, offering low deployment
costs and supporting short message delivery with low latency.
V2I, besides extending the coverage via base stations or
road side units (RSU), also enables external connectivity to
infotainment applications via Traffic control centers and the
Internet.

Typically, IEEE 802.11-OCB is considered more suitable
for V2V communications than the cellular network, in which
interference is a major issue since device-to-device (D2D)
links share the same radio resources with other links in
the LTE network. Channel congestion, in IEEE 802.11-OCB,
used to be an important issue because the probability of
collisions, related to the CSMA protocol, increases with the

number of neighboring vehicles. This resulted in high end-
to-end latency and low channel utilization [1]. However,
recent research focused on 802.11-OCB has brought forth
several standard congestion control algorithms that manipulate
important parameters (e.g., transmission power and beacon
frequency) before the conditions become critical [15], [16].
Nevertheless, although the impact of channel congestion has
been reduced, it can never be fully eliminated. A large number
of users (and higher data loads) will always eventually result
in higher latency values due to the nature of the channel
access mechanism. Meanwhile, LTE is more suitable for V2I
communications since it provides wide coverage, a robust
mechanism for mobility management, high uplink and down-
link capacity, a centralized flat architecture, and high efficiency
for broadcasting [5].

To exploit the characteristics of the different access net-
works, we propose an Intelligent Decision Framework, pre-
liminarily introduced in [17] and illustrated in Fig. 2. This
framework is expected to improve the performance of the
network both in terms of total throughput and end-to-end delay
by allowing a single application to take full advantage of all the
individual radio access networks (RANs) working in parallel.
Our first approach to implement the decision-rule module of
the framework in Fig. 2 is based on a decision tree, illustrated
in Fig. 3.

Note that each data flow has its own rules, which depend
on the network type, current network conditions, application
requirements, and link direction (i.e., uplink or downlink).
The differentiation of link direction is necessary since a
single vehicle typically has less information available than the
network infrastructure at the moment of making a decision.
The hierarchical tree characterizes the decision process of a
single application when sending data to other vehicles in the
network in such a way that, for each data flow, the sender
attempts to minimize the end-to-end delay and improve the
throughput of the system without compromising the reliability
requirements of the application.

A. Use case with IEEE 802.11-OCB and LTE

Consider a typical safety application in which every vehicle
continuously sends beacon messages to all its neighbors.
The most critical requirement is that end-to-end delay for a
transmission must not exceed 100ms, otherwise the receiver
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Fig. 2: Proposed Framework

does not have time to react, especially in the case of emergency
applications. For most scenarios, a sending frequency of 10 Hz
is required by the ETSI standard, but there are also scenarios
requiring only 2 Hz [18], [19].

The access networks available are: IEEE 802.11-OCB in ad-
hoc and infrastructure modes (i.e., there are RSUs available),
and the LTE cellular network. For any access mechanism, the
total end-to-end delay can be generalized as follows:

T = Ta + Ttx + δ + Tp. (1)

Tp is the processing time, which can be assumed as a con-
stant value because it depends on the processing capabilities
of the end device. The propagation delay is δ, which depends
on the length of the physical link, and the transmission delay
is Ttx, which depends on the transmission rate and packet size.

Therefore, we only need to focus on the difference be-
tween the access mechanisms (Ta) for each type of network.
For 802.11p ad-hoc communication, we simplify the model
presented in [20] for the Distributed Coordination Function
(DCF) delay to obtain the access time in basic mode (i.e.,
without RTS/CTS). Then, given the workings of the DCF
mechanism, if the channel is detected idle for a period of
time (TDIFS), a station can transmit immediately. Otherwise,
a collision is detected, and the station will defer until the end
of transmission while a random backoff interval is selected.
Taking that into account, we use the following models for
TSuccess, the average time the channel is sensed to be busy due
to a successful transmission, and TCollision, the average time
the channel is sensed busy by each station during a collision:

TSuccess = TDIFS +
H + P

Cd
+ δ+TSIFS +

ACK

Cc
+ δ, (2)

TCollision = TDIFS +
H + P

Cd
+ δ, (3)

where H is the packet header, P is the payload in number
of bits, Cd is the capacity of the link (in bits per second)
for data channel, and Cc is the capacity for control channel.
The header H consists of H = PHYhdr + MAChdr, and
the payload includes the IPhdr. The symbol δ denotes the
propagation delay inside the end device, depends on the PHY

layer, and accounts for the time required to signal the state of
the channel to the MAC layer.

Moreover, TSIFS is the time the receiver waits to send the
ACK package back to the transmitter. Because we are only
interested in the broadcast scenario, we can ignore the sending
of the ACK package. Thus, equation 2 is reduced to:

TSuccess = TDIFS +
H + P

Cd
+ δ. (4)

In the broadcast scenario, the average time the channel is
sensed to be busy due to a successful transmission is identical
to the average time the channel is sensed to be busy during a
collision. For a preliminary analysis we are only interested in
getting a good approximation. To do this, we can measure the
delay of every user in the network and then take the average
of the measurements. If we know that a user senses that the
channel is busy N times while attempting a transmission, then
the average packet delay is given by:

T = N ∗TCollision+

N∑
i=1

(
CWMin − 1

2
)∗ST+TSuccess, (5)

where ST is the length of a time slot and CWMin is the
minimum size of the contention window. During the backoff
procedure, the backoff time is uniformly chosen in the range
[0, CWMin − 1] interval. For our approximation, we take the
value CWMin−1

2 as it represents the average value over the
distribution. Because the ACK cannot be used in the broadcast
scenario, the mechanism only has one backoff stage and
CWMin does not increase after each retransmission attempt.
Thus, each time the channel is sensed to be busy a user waits,
on average, a time equal to CWMin−1

2 before sensing the
channel again.

Meanwhile, for infrastructure-based 802.11p, the EDCA
mechanism includes the use of the AIFS differentiation and
virtual collision mechanism specified in the 802.11e standard
[21]. In the same work, the authors provide a simplified delay
model for the channel access time in basic mode:

TSuccess = TAIFSmin+
H + P

Cd
+δ+TSIFS+

ACK

Cc
+δ, (6)
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Fig. 3: Decision Tree

TCollision = TAIFSmin +
H + P

Cd
+ δ, (7)

As in the DCF case, because we are only interested in
the broadcast scenario, we can disregard the part relating
to the ACK message, and the average time of a successful
transmission is reduced to:

TSuccess = TAIFSmin +
H + P

Cd
+ δ. (8)

Lastly, if a user experiences an average of N collisions
before a successful transmission, then the average packet delay
per user is again given by equation 5. Since we are using
only one type of AC (also known as service class), the model
is essentially the same as the ad-hoc mode if TAIFSmin =
TDIFS (they usually differ by a constant value). It should
be noted that this model may be extended to account for the
RTS/CTS mechanism and different AC.

In the case of LTE, the main difference between particular
delay models arises from the underlying scheduling mecha-
nism. CAM exchanges in LTE involve transmissions from ve-
hicles to the infrastructure, followed by a message distribution
from the infrastructure to the vehicles concerned. Unicast is
always used for uplink transmission; in such a case, the chal-
lenge is to select the most appropriate channel type without
congestion risks. The RACH is a common uplink transport
channel usually selected for signaling and for transmitting

small data amounts, such as CAM and DENM messages [22].
On the other hand, the PUCCH-based transmission is not
susceptible to collisions and does not include backoff periods.
In [23], the authors compare the performance of PUCCH with
the RACH mechanism. Among the advantages of scheduling
via PUCCH are high reliability and nearly deterministic data
delay values. Assuming a data packet transmission takes 1
sub-frame of 1ms, the mean packet delay can be obtained as
follows:

E[τ ] = T/2 + T0 + 1, (9)

where T0 (8ms) is the PUCCH procedure duration and T
(10ms) is the PUCCH scheduling request periodicity. It is
worth highlighting that the use of PUCCH is only for uplink
communications from a vehicle to the base station. Afterward,
it is the LTE-based multicast mechanisms that deliver the
message to the other vehicles as needed.

B. Proof of concept of Decision Tree

In this section, we evaluate the effectiveness of the decision
tree via simulations. The simulation platform is based on
Veins [24], an open source framework for running vehicular
network simulations, and more specifically on the extension
Veins LTE [25]. Veins LTE includes a basic decision-making
template inside its application development module. Thus,
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one can develop a custom message dissemination scheme
inside the simulator. Using this module, we did deployed our
decision system in each vehicle in the simulation framework.
This allowed us to achieve the desired behavior within the
simulation.

It is important to note that path loss models are central to
accurately modeling information propagation in a vehicular
network. To achieve this, we used the Two-Ray Interference
model that captures ground reflection effects [26], [27]. We
also assumed that the interference due to inter-street beacon
messages can be mitigated by controlling the maximum in-
terference distance parameter provided by the simulator. Note
that the simulator also includes a simple obstacle shadowing
model that has been calibrated and validated against real-world
measurements [28], [29].

In the simulated scenario, vehicles are moving on a given
path through a road that contains one intersection, as shown
in Fig. 4. A typical collision warning application was im-
plemented for data dissemination. In the application, every
vehicle consistently sends beacon messages (CAM) to all its
neighbors; when a collision is detected, the collision warning
information is relayed to all vehicles in the vicinity.

Table II lists the parameters used in the simulation scenario.
The most critical requirement to meet, for each simulated
access network, is not to exceed 100 ms for end-to-end delay.
Otherwise, the receiver may not have enough time to react,
especially in the case of emergency messages.

Fig. 4: Simple Simulation Scenario

Figures 5a and 5b show the average MAC layer delay for
frequencies 2 Hz and 10 Hz, respectively. We observe that
when access networks work in an isolated manner, both are
able to deliver packets in less than 100 ms for a certain number
of neighboring vehicles. However, beyond the value of 12
neighbors for 10 Hz transmission (30 neighbors for 2Hz resp.),
the average delay for the IEEE 802.11-OCB network becomes
higher than the critical value. In both cases, the IEEE 802.11-
OCB network is capable of achieving a lower average delay in
low density scenarios (10 neighbors or less) compared to its
LTE counterpart. However, as the density increases, the LTE
network is able to maintain a more stable average delay due
to its advanced multicasting capabilities.

In both frequency scenarios, when the decision tree is
introduced to exploit the heterogeneous network, the system’s
delay is slightly higher than that of the faster network for a
given traffic density. This is the expected behavior because, in
an ideal scenario, the value for the delay using the decision

Parameter Value
Number of Vehicle Users 10 - 60

Beacon Frequency 2Hz or 10Hz
Beacon Size (Bytes) 250

Notification Message Size (Bytes) 500
LTE Base Stations 1

Vehicle Speed 50Km/h
Traffic Collision Duration 30s

TABLE II: Simulation Parameters

system should be the minimum value among all the networks,
with the IEEE 802.11-OCB exploited for short-range transmis-
sion and LTE employed as an extension to achieve long-range
coverage of data dissemination.
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Fig. 5: Average End-to-End Delay

The packet delivery ratio (PDR) for the collision notification
messages is shown in Fig. 6. We observe that in the low
frequency case, the IEEE 802.11-OCB network outperforms its
LTE counterpart. However, as the beacon frequency increases,
the high capacity nature of the LTE cellular network allows
it to maintain a consistent performance in the delivery of
messages while the ad hoc network performance degrades due
to its contention-based nature.

In both frequency cases, once a threshold of 15 neighbors is
reached and joint-network use starts, the system experiences
a boost in packet delivery. For the 2Hz frequency scenario,
a 32% increase in total PDR is achieved using the proposed
decision tree, whereas a 42% improvement is achieved for
the 10 Hz scenario. The packet delivery improvement is
proportional to the difference in the number of neighbors that
can now be reached under the critical threshold of 100 ms.

Finally, Fig. 7 shows a comparison between the delay
obtained using simulations and those delays calculated using
the analytical models introduced in section III-A. We observe
that the simulation results follow a pattern similar to those
produced by analytical models. In fact, the only difference
is a slight increase in the delay (2-3ms approx.) that can be
attributed to the time it takes the decision tree to process each
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packet. It follows that the preliminary results can be considered
as valid for both real traffic models and simulations. In the next
section, more realistic scenarios are used to test the decision
system.

C. Realistic Scenario Simulations

To obtain more realistic results, real city traffic data were
used from the TAPAS Cologne simulation scenario [30]. This
scenario describes the traffic within the city of Cologne,
Germany for a complete day.

The advantage of using this data is that the SUMO config-
uration files are already provided in the project repository;
thus, they can easily be adapted to the application under
consideration. The disadvantage is that it is impossible to
identify the exact density at any point in the simulation,
which means the results cannot be compared with those shown
in section III-B. However, it is not necessary to simulate
the entire network as one scenario. Because our aim is to
test the system under different network conditions, we can
study different sections of the network separately, and each of
these sections can be seen as a different simulation scenario
(downtown, highway, suburban areas, etc.). Studying each
scenario separately also reduces the computational time and
resources required to run each scenario.

D. Discussion of Simulation Results

In this section, the simulation results for the three individual
scenarios selected from TAPAS are presented and analyzed
separately. Also, the results for different network conditions
are tabulated into a single graph, and the results are then
compared with the preliminary results. Unlike the preliminary
results, where both 2 Hz and 10 Hz beacon frequency scenarios
were studied, in this section we focus only on the 10 Hz

scenario–the value used by most safety applications defined
in the ETSI (Europe) and SAE (USA) standards. All three
simulation scenarios were repeated a total of 30 times, 10
times for each access technology analyzed.

E. Downtown Cologne

Fig. 8a shows the results for the downtown Cologne sce-
nario. Since 802.11-OCB is unable to perform at acceptable
values under these conditions, the focus will be on analyzing
the performance of the Decision Tree against LTE.

Fig. 8b shows that the decision to use LTE over 802.11-
OCB dominates given the higher channel capacity and superior
broadcasting capabilities of LTE. This is expected given it is
a high density scenario.

Even though the performances of LTE and the decision tree
follow the same pattern, latency values of the decision tree are
lower (by 8 ms on average) because a fraction of the messages
have been sent using 802.11-OCB.
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Fig. 8: TAPAS Cologne High Density Scenario Results

F. Suburban Cologne

Fig. 9 shows the results for the suburban/residential Cologne
scenario. As expected, since this is a low density scenario,
the decision to use 802.11 over LTE dominates given that
the 802.11-OCB standard was designed precisely for low
latency/high throughput communications over short distances,
and the number of neighbors is not high enough to make the
channel access delay an important factor in the decision.

Note, that in this scenario, the performance of the Decision
Tree is actually 2 ms worse on average versus using the 802.11
network because of the added delay in computing the decision
using the tree. However, this added delay is not high enough
to impact the decision-system performance in low density
scenarios.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2020 8

2 4 6 8 10 12

Number of Neighbors

0

0.1

T
o
ta

l 
E

n
d
-t

o
-E

n
d
 D

e
la

y
 (

s
)

Decision Tree Classification

DSRC 802.11p

LTE

Fig. 9: TAPAS Cologne Low Density Scenario Results
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Fig. 10: TAPAS Cologne Mix Density Scenario Results

G. Mixed Area Cologne

Fig. 10 shows the results for the mixed subur-
ban/commercial Cologne scenario. As expected, since this
scenario contains both low and high vehicle density moments
during the simulation, the Decision Tree chooses between
802.11 and LTE accordingly using the advantages offered
by both individual networks to boost the performance of the
system as required.

H. Integrated Simulation Results

Fig. 11a shows the complete tabulated results for the TAPAS
Cologne scenario. It can be observed that the Decision-Tree-
system behavior mimics that obtained during the preliminary
results. In low density scenarios, the Decision Tree chooses
802.11 due to its low latency and high throughput capabilities.
Then, as the vehicle density increases, it chooses LTE to take
advantage of its multibroadcast features.

The major difference that can be observed with respect
to the preliminary results is that, at a value of approx. 50
neighbors, the performance of the Decision Tree is superior
to the individual networks even when taking into account the
small delay in computing the actual decision. This occurs
because the simulations are now using a more realistic model
for the LTE Base Stations (or eNBs), which takes into account
the use of Resource Blocks (RB).

An RB is the smallest unit of resources that can be al-
located to a user by the scheduler in an LTE Base Station.
Considering that most of the LTE network service providers
use 10 MHz channels, the simulations also assumed 10 MHz
channels for the LTE eNB. Then, if 100 RBs are available
during each Transmission Time Interval (1 ms) according to
3GPP specifications, and the minimum resources that can be
allocated to a user as per standard are 2 RB in time domain,
then at most, an eNB can schedule 50 users per interval if it
uses an ideal scheduler, which is commercially unfeasible. At

that density value, the LTE network will, therefore, necessarily
show decreased performance.

However, at a network vehicle density value of 50, the
Decision Tree is able to respond to the LTE eNB limitation by
using the 802.11 network to service some of the vehicle users
in the network. This response overcomes the performance
limitation shown in the preliminary results, in which at every
point the system had a higher latency than the best performing
network. Then, even while considering the small delay in com-
puting the decision, the latency performance of the decision
system eventually beats the best performing network by taking
advantage of both networks in parallel.

Fig. 11b shows the PDR ratio obtained for the complete
TAPAS Cologne simulation scenario. As expected, the De-
cision System performance is superior to both individual
networks showing a large gap in performance against both
802.11 and LTE. In this case, the decision system’s PDR
advantage over the LTE network is approx. 39%, falling just a
little short of the preliminary results of 42% shown in Fig. 6.
It is important to remember that this boost in packet delivery
is proportional to the difference in the number of vehicle users
that can be reached under 100ms.

Finally, Fig. 11c shows the average packet losses incurred
by each network. Here, the difference between considering the
LTE Resource Blocks in the simulation can also be observed.
When the network reaches a density value of approx. 50
neighbors, the LTE network starts to lose fewer packages than
before but maintains the same average PDR due to resource
constraints, i.e., the number of application messages that are
generated but never sent actually increases because the eNB
is incapable of assigning more resources to serve all the users.

These analytical results validate the decision system ap-
proach in a realistic simulation scenario using real traffic
data to test a variety of network conditions and more accu-
rate mathematical/computational tools to model the different
entities present in the network. The decision tree system
has been proven capable of boosting the performance of a
standard safety application by taking advantage of the multiple
networks it has at its disposal. Then, using the decision system
approach, not only the latency but also the throughput values
of an application can be improved because more users are
reachable under the critical time threshold of 100 ms.

IV. DECISION SYSTEM AUTOMATION

A. Decision Tree Learning

In the previous section, the use of a decision tree was vali-
dated using both analytical and realistic simulation results. We
manually designed the tree for a specific class of applications
using what is commonly known as decision analysis to develop
a set of if-else type of rules for every particular type of data
generated by the application. If the communication scenario
changes, or if more information needs to be incorporated to
make the decision, then there are two possibilities:

1. Develop a new tree: This could be done, for example,
in the event of a change in application family. Among
safety applications, there are different classes that vary
both in terms of requirements and functionality, so that a
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Fig. 11: Full Scenario Results

change in the application family may require an entirely
new tree.

2. Extend the existing tree: This approach could be used
to incorporate different communication scenarios into
one tree. This would require the development of more
rules that would increase the size and complexity of the
decision tree.

The problem with both these approaches is that the tree
must be constructed manually. Given that the requirements
change for every family of applications and for every different
communication scenario, a large number of different trees
would have to be designed and implemented to obtain a truly
robust and generalized decision system. However, while doing
this manually is unfeasible, the decision tree approach has
proven itself capable of solving the task at hand by improving
the performance of the applications. Thus, we now focus on
automating the decision tree approach to create a more robust
and adaptable system.

To automate the decision tree creation process, we used
a machine learning approach called decision tree learning.
This technique, typical in the field of data mining [31],
uses a decision tree as a predictive model. Decision tree
learning requires the construction of a decision tree from
class-labeled training tuples and, as such, it falls under the
class of supervised machine learning techniques. A decision
tree is a flow-chart-like structure, in which each internal (non-
leaf) node denotes a test on a feature (attribute), each branch
represents the outcome of a test (a decision rule), and each
leaf (or terminal) node represents an outcome (categorical or
numerical value). Growing (creating) a tree involves deciding
which features to choose, what conditions to use for splitting,
and when to stop.

This work makes use of CART to build the decision trees
[32]. The GINI impurity metric used by CART is designed
to minimize classification error, and thus it was selected over
other algorithms because it minimizes the probability that the
system chooses the wrong network.

Table III shows an example of the features that can be
used to classify messages. We observe that the features are a
combination of the application requirements (e.g., latency via
priority), the communication scenario (e.g., who the sender
of the message is) and the network conditions (e.g., network
density). These features are the input of the proposed system
shown in Fig. 12. The intelligent decision system is the
classifier and the different networks through which a particular

message can travel within the system (e.g. RAN1, RAN2 and
RAN3) correspond to the target or class of the message i.e.
the output of the classifier.

Features Domain
Message Type Signaling, Control, Data

Sender Vehicle User or Core Network
Priority

(Latency Tolerated) Safety, Information, Entertainment

Network Density Number of One-Hop Neighbors
Beacon Frequency Low (2Hz) or High (10Hz)

TABLE III: Feature Space

As with the decision trees, in this framework, there is
no centralized architecture. Each user has an instance of
the classifier installed in the on-board-unit (OBU). When a
message is generated, it gets processed by the classifier. The
output corresponds to the wireless communication technology
through which the message will be sent. The training delay is
not relevant in our proposal because the classifier is trained
offline; thus, the only added delay comes from processing the
input through the classifier.

Now that the methodology has been established, the next
step is to recreate the manually created tree shown in Fig.
3 using decision tree learning. To achieve this, we create a
training set that reflects only those features containing values
(numerical or categorical) that would be encountered in a real
life cooperative awareness communication scenario.

To generate the tree, a training set with 10,000 samples
was created. This involved creating both the feature vectors
themselves and their corresponding target class vectors. Fig. 13
shows a 3D representation of the samples in the feature space,
a combination of numerical data (e.g., number of neighbors)
and categorical values (e.g., message type). This ability to
manipulate both types of data at the same time is one of
the most important advantages of using CART. The different
marker types illustrate the different labels or target classes for
each sample.

One disadvantage of decision tree learning methods is
they generally cannot guarantee the return of the optimal
decision tree because of the use of greedy methods in the tree
construction. However, this issue can be mitigated by training
multiple trees in which the features and samples are randomly
sampled with replacement.

Fig. 14 shows the decision tree created using CART that
has a structure similar to the original manually created tree.
In fact, the generated tree has a misclassification error under
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Fig. 12: System Framework

1%, which means that less than 1% of the messages would get
sent through the incorrect network. This tree will then agree
in 99% of the cases with the original tree.

10Signaling

0
8

20

Beacon Frequency

6

Control

Number of Neighbors

M
e

s
s
a

g
e

 T
y
p

e

40 4

App Data

260

802.11-OCB

LTE

Fig. 13: Scatter Plot of the Training Set

However, this extremely low error underlines an impor-
tant problem of using decision tree learning, which is the
propensity of the models to overfit the training data. In this
first example, it is not particularly important because the
generated tree is designed to work for a single application
type. Nevertheless, one of the objectives of this work is to
obtain a generalized decision method. Thus, it is important to
study the effect of increasing the training set to account for
different application scenarios and types.

A training set with 30,000 samples was created to obtain
a more generalized tree. This set includes samples for three
different cooperative awareness applications with similar re-
quirements but different modes of operation. The first appli-
cation is a typical V2X Cooperative Awareness use case with
a minimum beacon frequency of 10 Hz; this is the same type
of application used in the previous experiments. The second
application is based on a time limited periodic broadcast on

Fig. 14: 1st Decision Tree created using CART

event communication mode; this type of application only sends
beacons when certain events are triggered e.g. when emer-
gency brake lights turn on. The third application is periodic
triggered by vehicle mode with a minimum beacon frequency
of 2 Hz. Fig. 15 shows only a branch of the second decision
tree created using CART. The main disadvantage of using
decision tree learning can be observed almost immediately.
The generated tree increases, in size and complexity, with the
size of the training set.

Fig. 15: Branch of the 2nd Decision Tree created using
CART

The problem with overfitting is that it renders the decision
trees unable to generalize data very well. Basically, trees that
grow very deep tend to learn highly irregular patterns causing
an overfit of their training sets, i.e. they will have low bias but
at the cost of very high variance. Because of this, large scale
trees tend to be unstable; thus, small variations in the data
might result in a completely different tree being generated.

In terms of performance, the generated tree has a misclassi-
fication error of approximately 10%; then, initially about 10%
of the messages would get sent through the incorrect network.
This number is much higher compared to the initial tree
model, which is to be expected because the initial model was
concerned with only one type of application. Nevertheless, as
previously mentioned, this issue can be mitigated by training
multiple trees using sampling with replacements and will be
addressed in the next section.

The findings of this section can be summarized in four
key points: (1) decision trees have the classification power
required to be used as building blocks for the decision system;
(2) it is possible to obtain automated trees that are able to
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Algorithm 1: Random Forest Algorithm for Classifica-
tion

1 Generate Random Forest (X,Y,N);
Input : Training Set X = x1, ..., xn with targets Y = y1, ..., yn
Output: A Random Forest Classifier with N decision trees

2 Bootstrapping:
Perform bootstrapping N times over the training set by sampling
with replacement.
For n = 1, ..., N sample, with replacement, to select m examples
of the training set. The resulting subsets Xn, Yn are called
bootstrap samples

3 Fit Trees using feature bagging:
Use a random subset of features to perform CART procedure and
train a classification tree Tn on each set Xn, Yn from n = 1, ..., N

4 Tree Bagging:
After training N decision trees , classification is performed by
using majority vote.

handle generalized data. (3) to obtain a fully automated and
generalized system, it is necessary to improve the performance
of decision tree learning models; and (4) most importantly, we
have shown that the tree creation process can be automated
using machine learning.

B. Random Forests

Decision trees have shown a great capacity to act as decision
makers in heterogeneous vehicular scenarios. However, as
shown in the previous section, their performance as classifiers
must be improved to obtain a fully automated and generalized
system. To achieve this, an ensemble learning technique, called
Random Forest (RF), will be used.

Random Forest [33], [34] is a supervised learning algorithm
that creates a forest of random decision trees and qualifies
as an ensemble learning method. Random Forest averages
multiple deep decision trees, trained on different parts of a
training set, with the goal of reducing variance [35]. Reduced
variance, however, comes at the expense of a slight increase
in bias and some loss of interpretability; however, this method
generally boosts the performance in the final model.

The current version of RF developed by Leo Breiman [34]
combines the random selection of features with Breiman’s
own idea of bagging [36] (short for bootstrap aggregating).
Algorithm 1 shows a summary of the Random Forest algo-
rithm implemented for classification. Bagging is a two step
process that involves bootstraping (step 2) and aggregating
(step 4). Using this method, multiple versions of a predictor
are generated to obtain an aggregated predictor.

This combination of techniques allows the model to limit
overfitting without increasing the error due to bias. As the
number of trees increases, the likelihood of overfitting the
forest decreases. RF solve the three most important issues of
decision tree learning presented in the previous section (over-
fitting, variance and bias). This makes it an ideal candidate
to achieve the desired automation and generalization of the
decision system framework.

C. Automated System Performance

Before analyzing the final results, there is one more concept
that needs to be introduced: the out-of-bag (OOB) error. OOB

allows the prediction error of machine learning models that use
bagging to be measured so as to sub-sample data samples used
for training. Because all trees in the forest are trained using
a portion of the training set, there is a set of samples that
has never been seen by each individual tree. This set is called
out-of-bag examples. There are N such sets (one for each
tree that is generated). The OOB classifier is the aggregation
of votes ONLY over the trees that do not contain a specific
sample (xi, yi). The OOB estimate for the generalization error
is given by the error rate of the out-of-bag classifier on the
training set. This provides empirical evidence to show that the
out-of-bag estimate is as accurate as using a test set of the
same size as the training set [36].

Applying the above concepts of the RF algorithm, the
next step is to test it using the same Cologne simulation
scenario described previously and compare its performance
to the decision tree. Next, the fully trained RF is put directly
in the simulator to make decisions at the moment of mes-
sage generation, replacing the decision tree. The rest of the
simulation parameters are left untouched with respect to the
experiments described in the previous sections.

Fig. 16 shows the OOB error obtained using RF on the
TAPAS Cologne dataset analyzed in the previous section. We
can observe that as the number of grown trees increases, the
OOB error decreases. However, this comes at the cost of a
higher computational time and resources because more trees
need to be generated and tested. At a value of 10 trees, the
OOB error is 1.2% (for 20 trees, the error is 0.8% resp.),
indicating that the RF algorithm agrees with the manually built
tree approx. 98.8% of the time (99.2% resp.).
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Fig. 16: Out-of-bag Error versus Number of Trees

Fig. 17a shows a comparison between the end-to-end la-
tency values of the RF and the decision tree. This comparison
uses an RF algorithm with 10 grown trees. We observe that the
values obtained by the two methods differ only on a mostly
constant value of approx. 5 ms. This 5 ms represents the
computational time to make the decision by aggregating the
10 trees instead of using just one tree.

Fig. 17b shows a comparison between the packet delivery
ratio of RF and the decision tree in which the results are
practically identical. The difference is approximately 0.8%
between both values with a slight advantage for the decision
tree. This small difference is close to the value predicted by
the OOB error as an estimation for the generalization error.

Finally, Fig. 17c shows the difference between the percent-
age of lost packets in the network. Here, RF shows a slight
advantage of approx. 1% on average. Nevertheless, the values
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Fig. 17: Cologne scenario comparison between Random Forests (10 Trees) and Decision Tree

are essentially the same; this was expected given the highly
similar results for the delay and PDR.

We conclude that RF is capable of replicating the results
obtained with the manually built tree but with the added
advantages of not having to build the classifier manually and
of being able to adapt to changing requirements. If another
application needs to be added or if the network conditions
change abruptly, a simple retraining of the classifier is all that
is needed to keep the system running with high performance.

V. PERFORMANCE COMPARISON

In this section, we compare the performance of RF against
the state-of-the-art related contributions (e.g. [11], [13], [14]).
We focus on the similarities between the performance metrics
used in other methods and our system (latency and PDR) to
decide which could be compared to our proposed scheme. For
this reason we did not consider [11] and [14] to be suitable
for comparison because they used different, noncomparable
metrics. In Ucar et al. [13], PDR and average delay (among
other metrics) were used to measure performance of cluster-
based IEEE 802.11p and LTE hybrid architecture for message
dissemination. The architecture was based on the selection
of gateway vehicles (i.e. cluster heads) that forward (offload)
the data of all cluster members towards the cellular network.
We reproduced the scenario analyzed in [13] substituting the
proposed VMaSC method (one hop variant) with our own
decision system to generate a one-to-one comparison. It is
worth noting that VMaSC outperforms most of the other
classic VANET multihop hybrid architecture algorithms such
as NHOP [37] and MDAC [38].

The scenario consisted of a five-kilometer, two-lane, two-
way road. Vehicles were injected into the road according to a
Poisson process with a rate equal to two vehicles per second.
The vehicles had a maximum variable speed ranging from 10
to 35 m/s. Thus, the average number of neighbors for any
vehicle ranged from 10 to 18 at different times for different
scenarios. Because the communication scenario is similar to
those we used to train and evaluate the RF scheme, we did
not perform any additional adjustments to the classifier shown
in the previous section.

Fig. 18a shows a comparison between PDR obtained using
VMaSC and our decision system. Our decision system held a
slight advantage for speeds up to 32m/s. Beyond this speed,
VMaSC slightly outperformed our system.

Fig. 18b shows a comparison between PDR of VMaSC
and the decision system with respect to vehicle density. In

this comparison, the decision system outperformed VMaSC,
an expected outcome given that our method incorporates the
number of neighbors as a feature of the decision system.

Finally, Fig. 18c shows a comparison between the end-to-
end delay of VMaSC and the decision system with respect
to the maximum speed of vehicles. In this comparison, both
methods maintain a relatively stable performance as the max-
imum speed increases. However, the average delay of the
network using VMaSC is over the 100ms critical threshold
required for safety applications (the same holds true for the
two and three hop variants of the algorithm). Our decision
system achieves an average under this value for all speeds
tested.

It is worth noting that VMaSC performs better when the
number of hops between vehicles is greater than one, espe-
cially in regards to the packet delivery ratio. However, a key
advantage of our scheme is that it can be incorporated into
other schemes. Indeed, the decision-based system does not put
any restrictions on whether the vehicles can be in a cluster
or any other type of platooning mechanism. Moreover, our
scheme is not limited to the use of a single decision-maker
(classifier) for the entire network. Multiple RFs could be used
within the system e.g. one for cluster heads and another for the
remaining vehicles. Furthermore, the clustering information
could even be incorporated into the RF training as a feature.
Thus, our methodology could potentially be integrated with
other hybrid architectures such as VMaSC to achieve a greater
boost in performance by combining their advantages with our
classifier approach.

One last thing worth noting is that our methodology can be
easily integrated into an SDN-based architecture [39]. Indeed,
having a centralized controller architecture means that we can
handle the deployment of the classifier into the vehicles. Also,
whenever the classifier needs to be updated, the training can
be done in the cloud to avoid adding overhead and extra delay
to the message dissemination. Then, using a scheme such as
the one proposed in [40], an SDN architecture can be used to
distribute the updated classifier to vehicles in the network.

VI. CONCLUSION

In this work, we introduced a methodology to improve the
performance of safety applications deployed over vehicular
networks. Our scheme exploits the inherent network diversity
present in VANETs to create a decision system that takes
into account the network conditions (e.g. latency, channel
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Fig. 18: Performance Comparison between Decision System and VMaSC 1-Hop

congestion and capacity) and the application requirements
(e.g. maximum tolerable delay and message exchange rate) to
choose the best available network at the moment of message
generation.

The first implementation of the decision system took the
form of a Decision Tree. The study of its performance under
a realistic traffic scenario confirmed the findings of the prelim-
inary analysis and simulations. Using the capabilities of each
network, the decision system was able to reduce latency and
boost throughput. The Random Forest algorithm, an automated
classifier, was then used to reproduce the performance of
the manually-built Decision Tree. This automated system has
the advantage of being able to adapt to different application
requirements without the need to manually construct a new
tree for each application. Comparing the performance metrics
of our automated decision system with another hybrid archi-
tecture (VMaSC) that used the same metrics, we found that our
approach outperforms most clustering based hybrid schemes
in terms of latency, PDR per vehicle density and PDR for
speeds up to 115 km/h.
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Sandra Céspedes (IEEE M’12, SM’17) received her
B.Eng.(2003) and Specialization (2007) degrees in
Telematics Engineering, and Management of Infor-
mation Systems, from Universidad Icesi, Colombia,
and a Ph.D. (2012) in Electrical and Computer En-
gineering from the University of Waterloo, Canada.
She is an Assistant Professor with the Department of
Electrical Engineering and the head of the Wireless
Networking Research Group (WiNet), Universidad
de Chile, Santiago, Chile. Dr. Céspedes holds an
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